
Applying Artificial Intelligence on Edge devices using Deep
Learning with Embedded optimizations

User group meeting 3 29-06-2021

ai-edge.be

iot-incubator.be www.eavise.be

VLAIO TETRA HBC.2019.2641

https://ai-edge.be/
https://iot-incubator.be/
http://www.eavise.be/

Agenda
1. Introduction

2. Overview of frameworks

3. Academic use case

4. Use cases by the user group

1. E.D.&A.

2. TML & Digipolis

3. Melexis

5. Workshop

6. VLAIO

7. Networking

2

Neural network deployment

• Overview

• Design space model

• Examples

3

Neural network deployment

Edge Impulse flow:

Preprocessing:

• Example Academic use case

Deployment

4

Neural network deployment

• Deployment possibilities in Edge Impulse

• 2 options:
• Choose “library” (framework)

→ Download library for your hardware

• Choose “firmware” (device)

→ Acquires data via data forwarder (CLI tool from Edge
Impulse), runs network on device, reports back to online
tool

5

Neural network deployment

Library deployment in Edge Impulse

• Frameworks:
• C++ & Arduino (TFLite)
• Cube.MX CMSIS Pack
• WebAssembly (node.js)
• TensorRT (Nvidia GPU)

• Our Target:
• Sensortile
• STM32L476JGY (Cortex M4)
• 80 MHz
• 128 KB RAM
• 1 MB Flash

6

Neural network deployment

Library deployment in Edge Impulse

• Model:
• TFLite model (2D conv)

• Possible optimizations:
• Quantizing 32 bit float → 8 bit int
• EON Compiler (Edge Optimized Neural)
• Compared to TFLite for µC compiler:

• 25-55% less RAM, 35% less Flash
• Same accuracy
• Compiles model to C++
• No interpreter necessary
• Not loading model @ runtime

7

Neural network deployment

Library deployment in Edge Impulse
• Results with (inference only)

• Quantization: 32 bit float → 8 bit int
• EON Compiler

8

Compiler Quantisation Accuracy (%) Latency (ms) RAM usage (kB) Flash usage (kB)

Normal
32 bit float 85.5 165 90.4 65.4

8 bit int 85.5 35 28.3 53.2

EON
32 bit float 85.5 165 73.0 46.6

8 bit int 85.5 35 20.6 33.5

User group interaction

Questions / remarks?

9

Update Academic
use-case

Detection of writing A or B by using the 3-axis
accelerometers of an STM Sensortile attached to a pen

10

Update Academic use-case: Overview

1. Hardware update
2. Data acquisition update
3. Analysis on optimal inference model

a. No pre-processing (raw data)
b. Spectral analysis - FFT length
c. Spectral analysis - LPF
d. Spectral analysis - HPF
e. Spectrogram - 1D conv
f. Spectrogram - 2D conv

4. Conclusion & overall best

11

Update Academic use-case: Hardware

• Design of Sensortile & pen holder
• Several iterations
• Click & slide mechanism
• Final 3D printed product

• Allows access to:
• On/off switch
• Micro-USB for charging & UART
• SWD-pins (Serial Wire Debug)
• SD-card slot

12

Update Academic use-case: Data

13

• Acquiring more training & test data
• During student project-week

• Colleagues
• Students

• New dataset:
• A-Left
• A-Right
• B-Left
• B-Right
• Idle

• Old dataset:
• A-Left
• B-Left
• Idle

Update Academic use-case: Analysis

14

• Analysis on optimal inference model

• Preprocessing: YES/NO?
• Fully interconnected (dense) layer: how many neurons?

• Which combination yields the best result?
• Minimal loss
• Maximal accuracy
• Latency/RAM usage

Update Academic use-case

Recap of the acquired data: (input)

One letter equals:

• Measurement for 1 second @ 100 Hz (101 datapoints)
• 3-axis accelerometer data (3x101 datapoints)
• Total = 303 datapoints (inputs)

Goal: classify to 5 labels (outputs)

15

Update Academic use-case: Raw data

1. Raw Data (no preprocessing)

Network topology: FFNN

16

303 inputs hidden layer (x neurons) 5 outputs

Update Academic use-case: Raw data

x-axis: number of neurons

y-axes: performance metrics

Full lines: 32 bit float

Dashed lines: 8 bit int (quantized)

Cyan: RAM with EON compiler

(accuracy, loss, latency equal)

17

Update Academic use-case: Raw data

Raw Data Conclusions

- Min. 30 neurons
- Accuracy ~80%
- Loss = high
- RAM: within specs

- EON compiler: < 2 kB
- Latency (7 → 2 ms)

18

Update Academic use-case: Spectrum

2. Spectral Analysis (FFT)

Network topology: FFNN

19

FFT inputs hidden layer (x neurons) 5 outputs

Update Academic use-case: Spectrum

2. Spectral Analysis

Options in Edge Impulse:

• Apply filter: None, LPF, HPF
• Cut-off frequency
• Filter order
• FFT length (power of 2)

20

Extracted features:

• RMS value after filter
• N peaks (value & frequency)
• (M-1) Power buckets

• with M edges

Total features: 1+2N+(M-1)

Update Academic use-case: Spectrum

2. Spectral Analysis

Options in Edge Impulse:

• Apply filter: None, LPF, HPF
• Cut-off frequency
• Filter order
• FFT length (power of 2)

21

Extracted features:

• RMS value after filter
• N peaks (value & frequency)
• (M-1) Power buckets

• with M edges

Total features: 1+2N+(M-1)

Update Academic use-case: Spectrum

2. Spectral Analysis

No filter, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 64
x-axis: number of neurons

y-axes: performance metrics

Full lines: 32 bit float

Dashed lines: 8 bit int (quantized)

Cyan: RAM with EON compiler

(accuracy, loss, latency equal)

22

Update Academic use-case: Spectrum

2. Spectral Analysis

No filter, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 128
x-axis: number of neurons

y-axes: performance metrics

Full lines: 32 bit float

Dashed lines: 8 bit int (quantized)

Cyan: RAM with EON compiler

(accuracy, loss, latency equal)

23

Update Academic use-case: Spectrum

2. Spectral Analysis

No filter, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 1024
x-axis: number of neurons

y-axes: performance metrics

Full lines: 32 bit float

Dashed lines: 8 bit int (quantized)

Cyan: RAM with EON compiler

(accuracy, loss, latency equal)

24

Update Academic use-case: Spectrum

FFT Length Conclusions:

- Length: almost no effect
- Less inputs

- → Lower latency
- 20-30 neurons
- Accuracy ~80%
- Loss = lower

- Compared to raw data
- RAM: within specs

- EON compiler: < 1.5 kB
- Latency (2 → 1 ms)

25

Update Academic use-case: Spectrum

2. Spectral Analysis

Options in Edge Impulse:

• Apply filter: None, LPF, HPF
• Cut-off frequency
• Filter order → 6
• FFT length → 128

26

Extracted features:

• RMS value after filter
• N peaks (value & frequency)
• (M-1) Power buckets

• with M edges

Total features: 1+2N+(M-1)

Update Academic use-case: Spectrum

2. Spectral Analysis

LPF, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 128

32 bit float (not quantized)

x-axis: number of neurons

y-axes: cutoff frequency (Hz)

27

Update Academic use-case: Spectrum

2. Spectral Analysis

LPF, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 128

8 bit int (quantized)

x-axis: number of neurons

y-axes: cutoff frequency (Hz)

28

Update Academic use-case: Spectrum

2. Spectral Analysis

HPF, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 128

32 bit float (not quantized)

x-axis: number of neurons

y-axes: cutoff frequency (Hz)

29

Update Academic use-case: Spectrum

2. Spectral Analysis

HPF, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 128

8 bit int (quantized)

x-axis: number of neurons

y-axes: cutoff frequency (Hz)

30

Update Academic use-case: Spectrum

2. Spectral Analysis

Other performance metrics:

• Latency: Independent of cut-off frequency (~1-2 ms)
• Ram usage: similar as other spectral analysis performance (~2 kB)

Conclusions:

• LPF better for this use-case (info in lower frequencies)
• Filter necessary to reach higher accuracies: > 80%

31

Update Academic use-case: Spectrogram

3. Spectrogram = time and frequency information

- Split up time domain in frames
- Take FFT per time frame

Number of network input features:

- FFT L:128, 92 frames
- 5980 inputs per accelerometer axis!
- 17940 inputs total

32

3. Spectrogram = time and frequency information

• Large number of inputs
• Single dense layer: not sufficient
• Solution

• 1D convolutional architecture
• 2D convolutional architecture

Commonly used on images

33

Update Academic use-case: Spectrogram

3. Spectrogram = time and frequency information

Results (with EON compiler, 8 bit quantisation):

Confusion matrix:

34

Update Academic use-case: Spectrogram

Architecture Accuracy (%) Loss Latency (ms) RAM usage (kB) Flash usage (kB)

1D convolutional 84.8 0.39 70 38.2 36.2

2D convolutional 84.2 0.82 948 178.2 121.3

Update Academic use-case

Overall comparison

Y-axis: Accuracy (%)

Versus: Latency, Loss, RAM

One of the best:

• LPF 4 Hz
• FFT 128
• 86 neurons

35

Update Academic use-case

Conclusions:
• All methods yield implementable result

• Used method is application-specific

• Used method depends on requirements

• A lot of variables, use prior knowledge to make the
right decisions

36

User group interaction

Questions / remarks?

37

Use case by the user group: E.D.&A.

• Induction cooker with built-in ventilation unit
• Capacitive touch control
• Increasing/decreasing ventilation

• 2 buttons
• 4 states
• 7 segment display

• Raw ADC values
• 12 Hz sampling rate
• arbitrary idle value
• delta touch +/- 20
• Published on UART @ 9600 baud

38

E.D.&A.: Induction cooker ventilation
control

• Classical signal processing for touch detection
• Hardware and firmware setup fixed
• Setup developed by intern student (2019)
• Labeled data using mechanical finger

• data from a single button
• idle states
• increasing / decreasing induction
• wet touch buttons
• ...

39

Use case by the user group: E.D.&A.

Goals

1. Find out if a NN on microcontroller can
replace classical processing algorithm
a. Best fit model
b. Targets:

i. Cortex M4
ii. Cortex M0

2. Find out if a NN can improve immunity compared to
classical processing algorithm
a. Different levels of induction settings
b. Wet touch buttons
c. Different types of pots and locations

40

User group interaction

Questions / remarks?

41

TML: Introduction

42

TML: Introduction

43

Telraam project

• Easy traffic counting
• Using Raspberry Pi with camera
• Insights about traffic density with user supplied

data

How?
• Classic ML & CV:

- Background subtraction: slow

- Classifier for object blobs: difficult and inaccurate

TML: Use Case

Goals:
• Traffic counting at home
• Using Raspberry Pi with camera
• 2 labeled data sets available
• Detecting 5 different classes:

pedestrian, bike, car, truck and other
• Frame rate of +/-5 fps

44

TML: Methodology

Use object detector to detect object class and location

 Slow (~ seconds/frame) in normal DL framework

 TF Lite is perfect for low power devices!

 Combine with Object Detection API

45

TML: Detection

Pre-trained (MS COCO) SSD+MobileNetV2 in TF

Train further on mix of data sets

160x160 resolution

Dynamic range post training quantization

of weights (TF Lite default settings)

Export to TF Lite model

46

TML: Tracking

Passersby should only be counted once
track them!

Using motpy library

Detect when in certain “zone”

47

TML: Setup

Raspberry Pi 4 4GB RAM with Raspberry Pi OS

Python code, includes:
• TF Lite interpreter
• motpy tracker
• OpenCV

Valid .tflite model
.tflite compatible labelmap file

48

TML: Results
59% COCO mAP
85% PASCAL VOC mAP
Average detection: 0.2 seconds +/- 5 fps

49

TML: Improvements
• More data: better generalization!

Retrain model for better results

• In-depth optimization using TF Lite:

various quantization strategies + more to come!

50

TML: Demo

51

User group interaction

Questions / remarks?

52

Workshop

● 14/09/2021 afternoon
● Based on the academic use case
● Edge Impulse

53

Networking

54

