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Neural network deployment

• Overview

• Design space model

• Examples
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Neural network deployment

Edge Impulse flow:

Preprocessing:

• Example Academic use case

Deployment
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Neural network deployment

• Deployment possibilities in Edge Impulse

• 2 options:
• Choose “library” (framework)

→ Download library for your hardware

• Choose “firmware” (device)

→ Acquires data via data forwarder (CLI tool from Edge 
Impulse), runs network on device, reports back to online 
tool
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Neural network deployment

Library deployment in Edge Impulse

• Frameworks:
• C++ & Arduino (TFLite)
• Cube.MX CMSIS Pack
• WebAssembly (node.js)
• TensorRT (Nvidia GPU)

• Our Target:
• Sensortile
• STM32L476JGY (Cortex M4)
• 80 MHz
• 128 KB RAM
• 1 MB Flash
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Neural network deployment

Library deployment in Edge Impulse

• Model:
• TFLite model (2D conv)

• Possible optimizations:
• Quantizing 32 bit float → 8 bit int
• EON Compiler (Edge Optimized Neural)
• Compared to TFLite for µC compiler:

• 25-55% less RAM, 35% less Flash
• Same accuracy
• Compiles model to C++
• No interpreter necessary
• Not loading model @ runtime
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Neural network deployment

Library deployment in Edge Impulse
• Results with (inference only)

• Quantization: 32 bit float → 8 bit int
• EON Compiler
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Compiler Quantisation Accuracy (%) Latency (ms) RAM usage (kB) Flash usage (kB)

Normal
32 bit float 85.5 165 90.4 65.4

8 bit int 85.5 35 28.3 53.2

EON
32 bit float 85.5 165 73.0 46.6

8 bit int 85.5 35 20.6 33.5



User group interaction

Questions / remarks? 
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Update Academic 
use-case

Detection of writing A or B by using the 3-axis 
accelerometers of an STM Sensortile attached to a pen
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Update Academic use-case: Overview

1. Hardware update
2. Data acquisition update
3. Analysis on optimal inference model

a. No pre-processing (raw data)
b. Spectral analysis - FFT length
c. Spectral analysis - LPF
d. Spectral analysis - HPF
e. Spectrogram - 1D conv
f. Spectrogram - 2D conv

4. Conclusion & overall best
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Update Academic use-case: Hardware

• Design of Sensortile & pen holder
• Several iterations
• Click & slide mechanism
• Final 3D printed product

• Allows access to:
• On/off switch
• Micro-USB for charging & UART
• SWD-pins (Serial Wire Debug)
• SD-card slot
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Update Academic use-case: Data
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• Acquiring more training & test data
• During student project-week

• Colleagues
• Students

• New dataset:
• A-Left
• A-Right
• B-Left
• B-Right
• Idle

• Old dataset:
• A-Left
• B-Left
• Idle



Update Academic use-case: Analysis
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• Analysis on optimal inference model

• Preprocessing: YES/NO?
• Fully interconnected (dense) layer: how many neurons?

• Which combination yields the best result?
• Minimal loss
• Maximal accuracy
• Latency/RAM usage



Update Academic use-case

Recap of the acquired data: (input)

One letter equals:

• Measurement for 1 second @ 100 Hz (101 datapoints)
• 3-axis accelerometer data (3x101 datapoints)
• Total = 303 datapoints (inputs)

Goal: classify to 5 labels (outputs)
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Update Academic use-case: Raw data

1. Raw Data (no preprocessing)

Network topology: FFNN
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303 inputs hidden layer (x neurons) 5 outputs



Update Academic use-case: Raw data

x-axis: number of neurons

y-axes: performance metrics

Full lines: 32 bit float

Dashed lines: 8 bit int (quantized)

Cyan: RAM with EON compiler

(accuracy, loss, latency equal)
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Update Academic use-case: Raw data

Raw Data Conclusions

- Min. 30 neurons
- Accuracy ~80%
- Loss = high
- RAM: within specs

- EON compiler: < 2 kB
- Latency (7 → 2 ms)
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Update Academic use-case: Spectrum

2. Spectral Analysis (FFT)

Network topology: FFNN
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FFT inputs    hidden layer (x neurons) 5 outputs



Update Academic use-case: Spectrum

2. Spectral Analysis

Options in Edge Impulse:

• Apply filter: None, LPF, HPF
• Cut-off frequency
• Filter order
• FFT length (power of 2)
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Extracted features:

• RMS value after filter
• N peaks (value & frequency)
• (M-1) Power buckets

• with M edges

Total features: 1+2N+(M-1)



Update Academic use-case: Spectrum

2. Spectral Analysis

Options in Edge Impulse:

• Apply filter: None, LPF, HPF
• Cut-off frequency
• Filter order
• FFT length (power of 2)
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Extracted features:

• RMS value after filter
• N peaks (value & frequency)
• (M-1) Power buckets

• with M edges

Total features: 1+2N+(M-1)



Update Academic use-case: Spectrum

2. Spectral Analysis

No filter, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 64
x-axis: number of neurons

y-axes: performance metrics

Full lines: 32 bit float

Dashed lines: 8 bit int (quantized)

Cyan: RAM with EON compiler

(accuracy, loss, latency equal)
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Update Academic use-case: Spectrum

2. Spectral Analysis

No filter, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 128
x-axis: number of neurons

y-axes: performance metrics

Full lines: 32 bit float

Dashed lines: 8 bit int (quantized)

Cyan: RAM with EON compiler

(accuracy, loss, latency equal)

23



Update Academic use-case: Spectrum

2. Spectral Analysis

No filter, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 1024
x-axis: number of neurons

y-axes: performance metrics

Full lines: 32 bit float

Dashed lines: 8 bit int (quantized)

Cyan: RAM with EON compiler

(accuracy, loss, latency equal)
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Update Academic use-case: Spectrum

FFT Length Conclusions:

- Length: almost no effect
- Less inputs

- → Lower latency
- 20-30 neurons
- Accuracy ~80%
- Loss = lower

- Compared to raw data
- RAM: within specs

- EON compiler: < 1.5 kB
- Latency (2 → 1 ms)
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Update Academic use-case: Spectrum

2. Spectral Analysis

Options in Edge Impulse:

• Apply filter: None, LPF, HPF
• Cut-off frequency
• Filter order → 6
• FFT length → 128
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Extracted features:

• RMS value after filter
• N peaks (value & frequency)
• (M-1) Power buckets

• with M edges

Total features: 1+2N+(M-1)



Update Academic use-case: Spectrum

2. Spectral Analysis

LPF, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 128

32 bit float (not quantized)

x-axis: number of neurons

y-axes: cutoff frequency (Hz)
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Update Academic use-case: Spectrum

2. Spectral Analysis

LPF, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 128

8 bit int (quantized)

x-axis: number of neurons

y-axes: cutoff frequency (Hz)
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Update Academic use-case: Spectrum

2. Spectral Analysis

HPF, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 128

32 bit float (not quantized)

x-axis: number of neurons

y-axes: cutoff frequency (Hz)
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Update Academic use-case: Spectrum

2. Spectral Analysis

HPF, 5 peaks, 5 buckets

→ 48 features (inputs)

FFT length 128

8 bit int (quantized)

x-axis: number of neurons

y-axes: cutoff frequency (Hz)
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Update Academic use-case: Spectrum

2. Spectral Analysis

Other performance metrics:

• Latency: Independent of cut-off frequency (~1-2 ms)
• Ram usage: similar as other spectral analysis performance (~2 kB)

Conclusions:

• LPF better for this use-case (info in lower frequencies)
• Filter necessary to reach higher accuracies: > 80%
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Update Academic use-case: Spectrogram

3. Spectrogram = time and frequency information

- Split up time domain in frames
- Take FFT per time frame

Number of network input features:

- FFT L:128, 92 frames
- 5980 inputs per accelerometer axis!
- 17940 inputs total
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3. Spectrogram = time and frequency information

• Large number of inputs
• Single dense layer: not sufficient
• Solution

• 1D convolutional architecture
• 2D convolutional architecture

Commonly used on images
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Update Academic use-case: Spectrogram



3. Spectrogram = time and frequency information

Results (with EON compiler, 8 bit quantisation):

Confusion matrix:
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Update Academic use-case: Spectrogram

Architecture Accuracy (%) Loss Latency (ms) RAM usage (kB) Flash usage (kB)

1D convolutional 84.8 0.39 70 38.2 36.2

2D convolutional 84.2 0.82 948 178.2 121.3



Update Academic use-case

Overall comparison

Y-axis: Accuracy (%)

Versus: Latency, Loss, RAM

One of the best:

• LPF 4 Hz
• FFT 128
• 86 neurons
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Update Academic use-case

Conclusions:
• All methods yield implementable result

• Used method is application-specific

• Used method depends on requirements

• A lot of variables, use prior knowledge to make the 
right decisions
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User group interaction

Questions / remarks? 
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Use case by the user group: E.D.&A.

• Induction cooker with built-in ventilation unit
• Capacitive touch control
• Increasing/decreasing ventilation

• 2 buttons
• 4 states
• 7 segment display

• Raw ADC values
• 12 Hz sampling rate
• arbitrary idle value
• delta touch +/- 20
• Published on UART @ 9600 baud
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E.D.&A.: Induction cooker ventilation 
control

• Classical signal processing for touch detection
• Hardware and firmware setup fixed
• Setup developed by intern student (2019)
• Labeled data using mechanical finger

• data from a single button
• idle states
• increasing / decreasing induction
• wet touch buttons
• ...

39



Use case by the user group: E.D.&A.

Goals

1. Find out if a NN on microcontroller can
replace classical processing algorithm
a. Best fit model
b. Targets: 

i. Cortex M4
ii. Cortex M0

2. Find out if a NN can improve immunity compared to 
classical processing algorithm
a. Different levels of induction settings
b. Wet touch buttons
c. Different types of pots and locations
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User group interaction

Questions / remarks? 
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TML: Introduction

42



TML: Introduction
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Telraam project

• Easy traffic counting
• Using Raspberry Pi with camera
• Insights about traffic density with user supplied 

data

 

How?
• Classic ML & CV:

- Background subtraction: slow

- Classifier for object blobs: difficult and inaccurate



TML: Use Case

Goals:
• Traffic counting at home
• Using Raspberry Pi with camera
• 2 labeled data sets available
• Detecting 5 different classes:                        

pedestrian, bike, car, truck and other
• Frame rate of +/-5 fps
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TML: Methodology

Use object detector to detect object class and location

  Slow (~ seconds/frame) in normal DL framework

 TF Lite is perfect for low power devices!

    Combine with Object Detection API                   

45



TML: Detection

Pre-trained (MS COCO) SSD+MobileNetV2 in TF

Train further on mix of data sets

160x160 resolution

Dynamic range post training quantization 

of weights (TF Lite default settings)

Export to TF Lite model
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TML: Tracking

Passersby should only be counted once
track them!

Using motpy library

Detect when in certain “zone”
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TML: Setup

Raspberry Pi 4 4GB RAM with Raspberry Pi OS

Python code, includes:
• TF Lite interpreter
• motpy tracker
• OpenCV

Valid .tflite model
.tflite compatible labelmap file
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TML: Results
59% COCO mAP
85% PASCAL VOC mAP
Average detection: 0.2 seconds   +/- 5 fps
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TML: Improvements
• More data: better generalization!

Retrain model for better results

• In-depth optimization using TF Lite:

various quantization strategies + more to come!
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TML: Demo
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User group interaction

Questions / remarks? 
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Workshop

● 14/09/2021 afternoon
● Based on the academic use case
● Edge Impulse
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Networking
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